围棋与数学

广义围棋是在 n x n 的棋盘上进行的,在广义围棋的给定位置确定赢家的计算复杂性主要取决于打劫规则。
围棋的复杂性“几乎”是在PSPACE内的,这是因为在对弈的非打劫阶段,每一手都是不可逆的,只有通过吃子才有可能出现重复的棋形,使得复杂性提高。
没有打劫的情况
编辑
没有打劫的话,围棋是PSPACE困难的。[2] 这是通过把PSPACE完全的TQBF(真量化布尔公式)简化到广义地理(英语:generalized geography),到平面广义地理,到最高3阶的广义地理,最后简化到围棋棋盘位置。
有打劫的围棋则不在PSPACE中。尽管实际的棋局似乎从没超出过
n
2
{\displaystyle n^{2}}
手,但一般而言,没有人知道围棋棋局的手数是否有一个多项式上限。如果有的话,围棋就会是PSPACE完全的。就目前而言,围棋可能是PSPACE完全,EXPTIME完全,甚至EXPSPACE完全的。
日本打劫规则
编辑
日本规则只规定了基本的劫,即一手棋下了之后,如果会恢复这手棋下之前的那个棋盘状态,那么这手棋是不允许下的。如果重复多手之前的棋盘状态是允许的,这也就意味着一局棋可以永久循环,如三劫循环,即同时有三个劫,经过12手就可以循环。
在日本打劫规则下,围棋是EXPTIME完全的。[3]
禁止全局同形规则
编辑
禁止全局同形规则是说重复出现任何先前棋盘状态都是不允许的。这是大多数中国和美国规则中使用的打劫规则。
在禁止全局同形规则下围棋的复杂性类为何,是一个未解决的问题。虽然日本打劫规则下围棋的复杂性为EXPTIME完全已被证明,但Robson的这个证明中,无论是上界还是下界的EXPTIME完全性的证明,都打破了禁止全局同形规则。[3]
至少现在已知,其复杂性至少是PSPACE困难,因为[2]中对围棋的PSPACE困难性的证明是不依赖于打劫规则的,或者说即便是没有打劫规则,也是PSPACE困难的。现在还知道围棋的复杂性是在EXPSPACE内的。[4]
Robson[4]证明了如果在EXPTIME完全的双人游戏的基础上,加上“禁止全局同形”的规则,游戏复杂性将会变为EXPSPACE完全。直观地说,这是因为对加入新规则的游戏来说,即便是确定一个局面下符合规则的下法,都需要指数级别的空间,因为从开局下到某一局面的长度是有可能达到指数级别的。
因此,广义国际象棋和西洋跳棋的禁止全局同形版本都是EXPSPACE完全的,因为广义国际象棋[5]和西洋跳棋[6]都是EXPTIME完全的。不过这个结果不适用于围棋。
围棋特定情形的复杂性
编辑
当棋盘被活子把棋盘分割成若干孤立的区域的时候,围棋就进入了官子阶段,这时每个局部区域都会有一个多项式级别的规范博弈树。用组合博弈论的话来说,当围棋分解成具有多项式级别规范博弈树的子博弈之和时,就会进入官子。
在这个定义下,围棋的收官是PSPACE困难的。[7]
这可以通过将PSPACE完全的QBF(Quantified Boolean Formula)问题转换成小型(多项式级别规范博弈树)围棋子游戏的总和来证明。请注意,论文并未证明围棋是在PSPACE中的,所以就有不是PSPACE完全的可能性。
确定哪一方征子有利是PSPACE完全的,无论是日本打劫规则还是禁止全局同形规则。[8] 这一点(PSPACE完全)可以通过模仿QBF证明。